China Hydraulic 7 rollers pipe bending machine for spiral or coil shape worm and wheel gear

Substance / Metallic Processed: ALLOY, Brass / Copper, Carbon metal, Stainless steel, PVC, Aluminum
Problem: New
Equipment Type: pipe bending machine
Bending Radius (mm): fifteen – four hundred
Max. Bending Angle (Deg): 360
Bending Precision (Deg): one
Automation: Automated
Calendar year: 2571
Electricity (kW): 4
Weight (KG): 800
Guarantee: 1 Calendar year
Relevant Industries: Production Plant, Building works , Sports activities health and fitness products, Steel household furniture, Automobile areas producing, Child carriage producing, Battery vehicle bumper, Air conditioning pipeline
Important Selling Factors: Computerized
Showroom Area: None
Advertising and marketing Type: New Merchandise 2571
Machinery Take a look at Report: Presented
Video clip outgoing-inspection: Offered
Warranty of main elements: 1 Calendar year
Core Factors: Bearing, Motor, Pump, Gear, PLC, Engine, Other, Gearbox
Minimal bending radius: 10 to fifteen times the pipe diameter
Bending speed: 100-200mm/s
Electrical power of oil pump motor: 5.5kw
Rotational speed of wheel mould: 60r/min
Optimum oil force: 15MPa
Transmission manner: Motor with reducer
Machine dimension: 1300*1100*1100mm
Right after-revenue Service Presented: Cost-free spare components
Packaging Particulars: Plywood case
Port: ZheJiang

Tools traits:
one.Hydraulic motor generate or reducer transmission, compact framework and substantial trustworthiness.
2.6 wheel push, not effortless to slide, thin wall content can also bend.
3.The foot switch is on and off, straightforward to work.
4.The equipment is balanced by altering the oil cylinder vacation and the spherical, arc or spiral of various curvature.
5.Alter mildew groove variety, can method numerous steel profiles, such as Angle metal, flat steel, round steel and other cross segment profiles.
6.Bending big radius profiles avoids the down sides of making the large bending die, which is a essential addition to the solitary-head and double-head bending equipment.

Specifications/models
Device
GY-sixty
Highest diameter that can be bent(Carbon teel)
MM
φ60×3.
Greatest diameter that can be bent(stainless steel)
MM
φ50X2.five
Max bending angle
°
360
Least bending radius
MM
250MM
Bending velocity
MM/s
a hundred-200
Wheel mould velocity
R/Min
60
Energy of oil pump motor
KW
five.5
Greatest oil force
MPa
fifteen
Equipment fat
KG
1400
Machine dimensions(L*W*H)
MM
1300*1100*1100

Questions and responses:
1.Q: Are you a maker or a investing company?
A:We are immediate selling businesses. Cedar is our trademark. We do pipe processing equipment.
two. Q: how did you select your device?
A: you have to explain to us the adhering to particulars
What dimensions do you want
How considerably the thickness
What content
How considerably accuracy is needed
Of system, you are going to be better off with the draft.
three. Q: what about your equipment quality and right after-sales service?
The quality assurance of our company is the very first, numerous previous customers, soon after sale we wholeheartedly serve you.
4. Q: exactly where is your manufacturing facility?
Our factory is located in HangZhou metropolis under the jurisdiction of HangZhou town. You can fly immediately to ZheJiang CZPT airport or PVG airport. Welcome to our humble abode.

FAQ
Decide on us
Q: How to rapidly choose the most appropriate merchandise for you?
A: You can check out it on the merchandise web page, or make contact with customer services at to tell the pursuing particulars: What device do you require? The dimension, thickness, materials, and processing demands of the workpiece, it is very best to have a drawing of the workpiece, and we will provide a much more skilled equipment in accordance to your demands.
Payment technique
Q: What are your payment terms?
A: We assist T/T, L/C, and so forth. TT, thirty% in progress, and the equilibrium 70% before cargo.
Supply guarantee
Q: What is the delivery time?
A: Generally in inventory, if you want to order fixtures and molds, we generally complete it in 7-fifteen operating times. For custom-made items, you should contact customer provider to figure out the specific time.
Use assure
Q: When I acquired this machine, I did not know how to use it. what do I do?
A: We will ship English manuals, installation and operation video clips with the gear. If you nonetheless have inquiries, we can talk via cellphone, Whatsapp, WeChat and e-mail.
Quality assurance
Q: How to make sure high quality?
A: We have factories. We are business experts and have been working for far more than 10 many years. We usually adhere to the policy of “higher top quality, all-spherical services”.
Guarantee provider
Q: How prolonged is the warranty time period?
A: Inside of 1 yr from the date of leaving the factory, if the component fails or is broken
(Owing to high quality troubles, putting on areas are excluded), our business gives these parts for free of charge.
Company go to
Q: How do we get to your firm?
A: Our organization is situated in HangZhou City, ZheJiang Province, close to ZheJiang . You can fly immediately to PVG Airport or ZheJiang Xihu (West Lake) Dis.ao Airport. Welcome to go to our business.

The Difference Between Planetary Gears and Spur Gears

A spur gear is a type of mechanical drive that turns an external shaft. The angular velocity is proportional to the rpm and can be easily calculated from the gear ratio. However, to properly calculate angular velocity, it is necessary to know the number of teeth. Fortunately, there are several different types of spur gears. Here’s an overview of their main features. This article also discusses planetary gears, which are smaller, more robust, and more power-dense.
Planetary gears are a type of spur gear

One of the most significant differences between planetary gears and spurgears is the way that the two share the load. Planetary gears are much more efficient than spurgears, enabling high torque transfer in a small space. This is because planetary gears have multiple teeth instead of just one. They are also suitable for intermittent and constant operation. This article will cover some of the main benefits of planetary gears and their differences from spurgears.
While spur gears are more simple than planetary gears, they do have some key differences. In addition to being more basic, they do not require any special cuts or angles. Moreover, the tooth shape of spur gears is much more complex than those of planetary gears. The design determines where the teeth make contact and how much power is available. However, a planetary gear system will be more efficient if the teeth are lubricated internally.
In a planetary gear, there are three shafts: a sun gear, a planet carrier, and an external ring gear. A planetary gear is designed to allow the motion of one shaft to be arrested, while the other two work simultaneously. In addition to two-shaft operation, planetary gears can also be used in three-shaft operations, which are called temporary three-shaft operations. Temporary three-shaft operations are possible through frictional coupling.
Among the many benefits of planetary gears is their adaptability. As the load is shared between several planet gears, it is easier to switch gear ratios, so you do not need to purchase a new gearbox for every new application. Another major benefit of planetary gears is that they are highly resistant to high shock loads and demanding conditions. This means that they are used in many industries.
Gear

They are more robust

An epicyclic gear train is a type of transmission that uses concentric axes for input and output. This type of transmission is often used in vehicles with automatic transmissions, such as a Lamborghini Gallardo. It is also used in hybrid cars. These types of transmissions are also more robust than conventional planetary gears. However, they require more assembly time than a conventional parallel shaft gear.
An epicyclic gearing system has three basic components: an input, an output, and a carrier. The number of teeth in each gear determines the ratio of input rotation to output rotation. In some cases, an epicyclic gear system can be made with two planets. A third planet, known as the carrier, meshes with the second planet and the sun gear to provide reversibility. A ring gear is made of several components, and a planetary gear may contain many gears.
An epicyclic gear train can be built so that the planet gear rolls inside the pitch circle of an outer fixed gear ring, or “annular gear.” In such a case, the curve of the planet’s pitch circle is called a hypocycloid. When epicycle gear trains are used in combination with a sun gear, the planetary gear train is made up of both types. The sun gear is usually fixed, while the ring gear is driven.
Planetary gearing, also known as epicyclic gear, is more durable than other types of transmissions. Because planets are evenly distributed around the sun, they have an even distribution of gears. Because they are more robust, they can handle higher torques, reductions, and overhung loads. They are also more energy-dense and robust. In addition, planetary gearing is often able to be converted to various ratios.
Gear

They are more power dense

The planet gear and ring gear of a compound planetary transmission are epicyclic stages. One part of the planet gear meshes with the sun gear, while the other part of the gear drives the ring gear. Coast tooth flanks are used only when the gear drive works in reversed load direction. Asymmetry factor optimization equalizes the contact stress safety factors of a planetary gear. The permissible contact stress, sHPd, and the maximum operating contact stress (sHPc) are equalized by asymmetry factor optimization.
In addition, epicyclic gears are generally smaller and require fewer space than helical ones. They are commonly used as differential gears in speed frames and in looms, where they act as a Roper positive let off. They differ in the amount of overdrive and undergearing ratio they possess. The overdrive ratio varies from fifteen percent to forty percent. In contrast, the undergearing ratio ranges from 0.87:1 to 69%.
The TV7-117S turboprop engine gearbox is the first known application of epicyclic gears with asymmetric teeth. This gearbox was developed by the CZPT Corporation for the Ilyushin Il-114 turboprop plane. The TV7-117S’s gearbox arrangement consists of a first planetary-differential stage with three planet gears and a second solar-type coaxial stage with five planet gears. This arrangement gives epicyclic gears the highest power density.
Planetary gearing is more robust and power-dense than other types of gearing. They can withstand higher torques, reductions, and overhung loads. Their unique self-aligning properties also make them highly versatile in rugged applications. It is also more compact and lightweight. In addition to this, epicyclic gears are easier to manufacture than planetary gears. And as a bonus, they are much less expensive.

They are smaller

Epicyclic gears are small mechanical devices that have a central “sun” gear and one or more outer intermediate gears. These gears are held in a carrier or ring gear and have multiple mesh considerations. The system can be sized and speeded by dividing the required ratio by the number of teeth per gear. This process is known as gearing and is used in many types of gearing systems.
Planetary gears are also known as epicyclic gearing. They have input and output shafts that are coaxially arranged. Each planet contains a gear wheel that meshes with the sun gear. These gears are small and easy to manufacture. Another advantage of epicyclic gears is their robust design. They are easily converted into different ratios. They are also highly efficient. In addition, planetary gear trains can be designed to operate in multiple directions.
Another advantage of epicyclic gearing is their reduced size. They are often used for small-scale applications. The lower cost is associated with the reduced manufacturing time. Epicyclic gears should not be made on N/C milling machines. The epicyclic carrier should be cast and tooled on a single-purpose machine, which has several cutters cutting through material. The epicyclic carrier is smaller than the epicyclic gear.
Epicyclic gearing systems consist of three basic components: an input, an output, and a stationary component. The number of teeth in each gear determines the ratio of input rotation to output rotation. Typically, these gear sets are made of three separate pieces: the input gear, the output gear, and the stationary component. Depending on the size of the input and output gear, the ratio between the two components is greater than half.
Gear

They have higher gear ratios

The differences between epicyclic gears and regular, non-epicyclic gears are significant for many different applications. In particular, epicyclic gears have higher gear ratios. The reason behind this is that epicyclic gears require multiple mesh considerations. The epicyclic gears are designed to calculate the number of load application cycles per unit time. The sun gear, for example, is +1300 RPM. The planet gear, on the other hand, is +1700 RPM. The ring gear is also +1400 RPM, as determined by the number of teeth in each gear.
Torque is the twisting force of a gear, and the bigger the gear, the higher the torque. However, since the torque is also proportional to the size of the gear, bigger radii result in lower torque. In addition, smaller radii do not move cars faster, so the higher gear ratios do not move at highway speeds. The tradeoff between speed and torque is the gear ratio.
Planetary gears use multiple mechanisms to increase the gear ratio. Those using epicyclic gears have multiple gear sets, including a sun, a ring, and two planets. Moreover, the planetary gears are based on helical, bevel, and spur gears. In general, the higher gear ratios of epicyclic gears are superior to those of planetary gears.
Another example of planetary gears is the compound planet. This gear design has two different-sized gears on either end of a common casting. The large end engages the sun while the smaller end engages the annulus. The compound planets are sometimes necessary to achieve smaller steps in gear ratio. As with any gear, the correct alignment of planet pins is essential for proper operation. If the planets are not aligned properly, it may result in rough running or premature breakdown.

China Hydraulic 7 rollers pipe bending machine for spiral or coil shape     worm and wheel gearChina Hydraulic 7 rollers pipe bending machine for spiral or coil shape     worm and wheel gear
editor by czh